
532 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 11, NO. 4, DECEMBER 2021

A Survey on the Optimization of Neural Network
Accelerators for Micro-AI On-Device Inference

Arnab Neelim Mazumder , Graduate Student Member, IEEE, Jian Meng , Graduate Student Member, IEEE,

Hasib-Al Rashid , Student Member, IEEE, Utteja Kallakuri, Xin Zhang , Senior Member, IEEE,

Jae-Sun Seo , Senior Member, IEEE, and Tinoosh Mohsenin , Senior Member, IEEE

Abstract— Deep neural networks (DNNs) are being proto-
typed for a variety of artificial intelligence (AI) tasks including
computer vision, data analytics, robotics, etc. The efficacy of
DNNs coincides with the fact that they can provide state-of-
the-art inference accuracy for these applications. However, this
advantage comes from the high computational complexity of the
DNNs in use. Hence, it is becoming increasingly important to
scale these DNNs so that they can fit on resource-constrained
hardware and edge devices. The main goal is to allow efficient
processing of the DNNs on low-power micro-AI platforms without
compromising hardware resources and accuracy. In this work,
we aim to provide a comprehensive survey about the recent
developments in the domain of energy-efficient deployment of
DNNs on micro-AI platforms. To this extent, we look at different
neural architecture search strategies as part of micro-AI model
design, provide extensive details about model compression and
quantization strategies in practice, and finally elaborate on the
current hardware approaches towards efficient deployment of the
micro-AI models on hardware. The main takeaways for a reader
from this article will be understanding of different search spaces
to pinpoint the best micro-AI model configuration, ability to inter-
pret different quantization and sparsification techniques, and
the realization of the micro-AI models on resource-constrained
hardware and different design considerations associated with it.

Index Terms— Deep neural networks, hardware accelerators,
quantization, model compression, neural architecture search,
inference engines.

I. INTRODUCTION

OUR modern-day lifestyle is supremely influenced by
artificial intelligence (AI). This influence has been so

overwhelming that there is hardly any sector today where there
is no evident effect of AI-based processes. The prime advan-
tage that AI has brought to our day-to-day life is convenience
and ease of operation. This convenience is the result of the
AI devices being able to perform compute-intensive tasks and

Manuscript received October 13, 2021; revised November 8, 2021; accepted
November 14, 2021. Date of publication November 25, 2021; date of current
version December 13, 2021. This article was recommended by Guest Editor
A. Wu. (Corresponding author: Arnab Neelim Mazumder.)

Arnab Neelim Mazumder, Hasib-Al Rashid, Utteja Kallakuri, and Tinoosh
Mohsenin are with the Computer Science and Electrical Engineering Depart-
ment, The University of Maryland Baltimore County, Baltimore, MD 21201
USA (e-mail: arnabm1@umbc.edu; hrashid1@umbc.edu; ukalla1@umbc.edu;
tinoosh@umbc.edu).

Jian Meng and Jae-Sun Seo are with the School of Electrical, Computer
and Energy Engineering, Arizona State University, Tempe, AZ 85281 USA
(e-mail: jmeng15@asu.edu; jaesun.seo@asu.edu).

Xin Zhang is with the IBM Thomas J. Watson Research Center, Yorktown
Heights, NY 10598 USA (e-mail: xzhang@us.ibm.com).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JETCAS.2021.3129415.

Digital Object Identifier 10.1109/JETCAS.2021.3129415

replace the human error from the system to a large extent.
These days we see AI techniques and devices being used in
the fields of knowledge reasoning, medical diagnosis, robotics,
vision analytics, e-commerce, navigation, etc. Such prolifer-
ation of AI is the consequence of years of research in the
domain of traditional AI techniques, classical machine learning
(ML), and more modern deep learning (DL) processes. AI has
evolved in the last few decades from being able to do small
object-oriented tasks to executing large compute-intensive
tasks in a matter of minutes or seconds. The latter upshot
comes from the introduction of deep neural networks (DNNs)
which is the building block of modern DL. The popularity of
DNNs has allowed the research community to take massive
strides in the domains of image classification, segmentation,
human activity recognition, natural language processing, text
authentication, etc. What makes it even more interesting is
that these DNN frameworks can exceed human-level accuracy
when optimized and used in a precise fashion.

The flip side to these advantages is that DNNs become
more accurate at the cost of large computation and storage
overhead. A practical solution that has been used over the
years is to deploy graphics processing units (GPUs) for these
computationally heavy applications. However, modern-day
DNN applications require more efficient acceleration of DNN
computation, which is where DNN accelerators come into
the picture. DNN accelerators provide specialized hardware
architectures to account for the computational complexity
and the billions of multiply-accumulate (MAC) operations it
requires to process. However, the aspect of huge overhead of
device utilization and energy consumption is still an issue
for such accelerators. To tackle this, existing research is
being streamlined to make DNN frameworks scale down to
the micro-AI level where tiny frameworks get accelerated to
compensate for the stringent device constraints of latency,
power consumption, and memory. In summary, existing DNN
accelerator designs need significant compression and scaling
to be able to process complex DNNs in a resource-efficient
fashion while also maintaining a reduced power envelope.

There has been a large amount of research towards efficient
hardware designs for DNN accelerators and there have been
important compression and quantization strategies that have
been introduced to facilitate the implementation of these
designs. This paper aims to describe the existing approaches
and provide extensive details of practical techniques for
micro-AI implementation in the manner of a survey. It is
imperative to note that this work does not intend to act as

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-9550-7917
https://orcid.org/0000-0002-7703-5020
https://orcid.org/0000-0002-9983-6929
https://orcid.org/0000-0002-0579-2268
https://orcid.org/0000-0002-4551-7789
https://orcid.org/0000-0001-5551-2124

MAZUMDER et al.: SURVEY ON OPTIMIZATION OF NEURAL NETWORK ACCELERATORS 533

Fig. 1. Illustration of the flow of optimization exploration for energy-efficient Micro-AI deployment in this manuscript.

a replacement for contemporary survey works [1], [2] but
provides an extension into newer approaches by building
upon the existing ones. Fig. 1 visualizes the structure that
is followed in terms of the model design and hardware
approaches for micro-AI application. The remainder of the
paper is organized as follows.
• Section II provides background for the different DNN

components, the process flow, and micro-AI perspectives
on inference versus training.

• Section III-A presents the DNN model development tech-
niques and tools used in the software aspect to address
the process of neural architecture search.

• Section III-B describes the compression approaches
used to reduce memory footprint and improve inference
latency of micro-AI architectures.

• Section III-C surveys the quantization techniques in prac-
tice and different frameworks that are used to accelerate
the process of quantization.

• Section IV presents details about the DNN accelerator
designs for micro-AI, and the optimizations used to
improve latency and reduce energy consumption with fast
convolution, data sharing, zero skipping and low precision
implementation.

II. BACKGROUND

DNNs include several constructs for feature extraction and
problem solving for tasks related to image classification, real
time risk inference [3], visual question answering [4] etc. The
most common constructs in practice range from vanilla convo-
lutional neural network (CNNs) layers, their altered structures
in depthwise convolution, fully-connected layers (FC) mim-
icking multi-layer perceptron operation, to recurrent neural
network (RNN) layers and their advanced counterparts in long
short-term memory (LSTM) networks.

CNNs can take an image as input and assign importance to
various parts of the image which in essence is called feature
extraction. CNNs are able to isolate spatial and temporal
relevance in an image with the help of filters. A kernel of
a predefined shape iterates through the whole image with

a predefined stride set by the user. With this traversal of
kernels, a wholesome understanding of the image feature
is created. As the image becomes more complicated, more
filters are required to learn the sophisticated differences in
features. In practice, a number of these layers are stacked
together with multiple filters to create a neural network which
makes the computations to increase by orders of magnitude
depending on the parameters specified. One way to reduce
computation is to downsample the image space with pooling
layers. Popular pooling layers either generate downsampled
patches by selecting the maximum value (max-pooling) or the
average value (average-pooling) in a patch. These layers act
as a process for both noise suppression and dimensionality
reduction. Convolution layers coupled with pooling layers
make up the backbone of traditional CNN frameworks.

In the construct of depthwise separable convolution
(DS-CNN), an image is not convolved according to the number
of output channels, but instead transformed only once in depth-
wise convolution and then elongated to the number of desired
output channels in pointwise convolution. Thus, not repeating
the same process for each channel saves up on computational
overhead by reducing expensive multiplication operations.

Another popular type of DNN is RNN. RNNs are suitable
for handling sequential data and hence are used in text and
voice authentication applications such as Apple’s Siri and
Amazon’s Alexa [5], [6]. RNNs have internal memory in
their architecture that allows them to remember the sequential
features of the input. However, in case of RNNs when the
gap between the relevant information and the place that needs
that information for inference becomes larger, there ensues
an issue called vanishing gradients which makes the model
stop learning. To address this challenge an advanced variant of
RNN called long-short term memory (LSTM) was introduced.
LSTMs extend the memory cells for existing RNNs to account
for the long-term dependencies.

DNN layers are stacked to form a feedforward network
and such networks require training to perform the desired
AI task. The complete flow of training for a classification
task is detailed in Algorithm 1. The epochs in Algorithm 1

534 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 11, NO. 4, DECEMBER 2021

Algorithm 1 Train a Network to Classify Some Aspect
Input: Consider a network N with an input dataset containing

A training samples.
Output: Predict the class label for each of the training samples.
Consider the training batch size to be B and the learning
rate to be L R.
epochs is the number of forward passes required for which
the model is trained.
xtrain is an allocation of input objects that comes serially
and ytrain contains the corresponding labels to the objects.
Train the model.
for e← 1 to epochs do

for i ← 1 to � A
B � do

batch = xtrain[i ∗ B : (i + 1) ∗ B]
ypred = forwardpass(N, batch)
loss = L(ypred , ytrain[i ∗ B : (i + 1) ∗ B])
g = backwardpass(loss)
gradientupdate(g)

return N

refer to the iterations during training. During each epoch of
training, the DNN makes a prediction for the input object it
encounters which is named as forward pass in Algorithm 1.
If the prediction is wrong, then the error is back propagated
through the DNN which is known as a backward pass. In a
backward pass, the gradients of the weights are updated per
the loss function specified. In this case, the gradient is a
function that updates the weights using the predefined learning
rate of the optimizer. This step is known as the gradient
update. In Algorithm 1, ypred signifies the predicted labels
after each epoch. This combination of forward and backward
passes strengthens the interconnection between the artificial
neurons so that the error is reduced, and the model learns to
identify the correct label for the object it already encountered.
To this extent, the loss function calculates the error during
each epoch and feeds that information to the optimizer. The
goal of the optimizer is to figure out the best parameters that
change the attributes of the network to reduce loss. Some of
the popular loss functions used in DNN networks are Mean
Squared Error (MSE), Mean Absolute Error (MAE), Categori-
cal Crossentropy, etc. Similarly, some common optimizers are
RMSprop, Adam, Stochastic Gradient Descent (SGD), etc.
The layers in a DNN utilize non-linearity through different
activation functions to understand the complex patterns in a
data stream. These activation functions range from traditional
nonlinear functions in sigmoid and hyperbolic tangents to the
more popular rectified linear unit (ReLU) and its variants such
as leaky ReLU and parametric ReLU.

The complete process of training requires intermediate
weights to be used for gradient update. This becomes
a bottleneck for DNN training accelerator designs since
these intermediate weights need to be stored separately,
increasing the memory overhead for the design. Another
bottleneck for DNN training is that the typically higher
floating-point precision is required especially for gradient
and weight updates, whereas DNN inference is usually
performed with a specific fixed-point low-precision for
acceleration. Additionally, maximizing the throughput on
resource-constrained devices with training is a challenge.

In summary, DNN training acceleration is computationally
expensive and requires precise hardware design approaches
with considerable resource utilization. This article thus focuses
on DNN inference engines, which are more suitable to be
deployed on micro-AI platforms with low power consumption.

III. MICRO-AI MODEL OPTIMIZATION

Conventional AI models are usually developed with the
sole focus on making them accurate in terms of their specific
application regardless of their computational complexity and
memory overhead. This is justified for tasks where there is no
restriction of computational cost and the availability of fast and
efficient GPUs to accelerate the inference process. However,
when considering frameworks like micro-controllers, memory-
constrained drones, low power edge devices, and small field
programmable gate arrays (FPGAs), these bulky AI models do
not suit the deployment criteria. In Fig. 2, some of the popular
models trained on ImageNet and Google Speech Commands
datasets have been illustrated, where models less than 4 MB
are deployable on ARM micro-controllers and FPGAs with
limited on-chip memory. All models except Hello Edge [7]
and its compressed counterpart is accelerated on ImageNet
dataset for image classification. Hello edge is targeted for
keyword spotting on Google Speech Commands dataset which
is a simpler problem than image classification and hence
the frameworks demonstrate a high accuracy. DNNs that
are accelerated on micro-controller units range from a few
KBs (Hello Edge on Cortex-M7 based STM32F746G-DISCO)
to a maximum of 4 MB (MCUNet on Cortex-M7 based
STM32H743). Models with higher memory footprint require
more resources and hence are accelerated through GPUs or
FPGAs coupled with off-chip DRAMs.

Furthermore, Fig. 2 also points to the reduction brought
about in model size of state-of-the-art networks through low
precision acceleration to infer that smaller models shown in
Fig. 2 can be suitably implemented on the resource-constrained
edge devices. For example, AlexNet is compressed down to
50× its original size in SqueezeNet albeit with considerable
accuracy drop. Similarly, ResNet-18 is shrunk down to 14×
its actual size in T-DLA [8] (Ternarized Deep Learning Accel-
erator). However, in order to deploy them on to micro-AI plat-
forms that contain very limited memory, usually not exceeding
1 MB, there needs to be further compression and processing.
In this section, we describe the three broad categories of
micro-AI model optimization in the lines of parameter search,
sparsification, and quantization.

A. Parameter Search

DNN inference engines require the software frameworks to
be optimized to allow energy-efficient micro-AI implemen-
tation. In DNNs there are a number of variables related to
each layer along with different combinations of optimizer and
learning rates known as hyperparameter. Traditional methods
of hyperparameter search include brute force algorithms such
as grid search, random search and genetic algorithms. How-
ever, there have been recent developments in the domain of

MAZUMDER et al.: SURVEY ON OPTIMIZATION OF NEURAL NETWORK ACCELERATORS 535

Fig. 2. The accuracy and model size correlation of popular DNNs on ImageNet and Google Speech Commands (Hello Edge). Compressed counterparts of
the state-of-the-art frameworks are signified by the same color as the main framework (i.e. AlexNet and SqueezeNet denoted by pink color).

automated frameworks and tools with regards to neural archi-
tecture search (NAS) that allow such broad search approaches
to be streamlined conveniently and promptly. In this section,
we delve deeper into the NAS strategies that are adopted to
find the best DNN configuration.

Traditional approaches towards parameter search result in
the discovery of architectures with high inference accu-
racy. However, it comes at the cost of a comprehensive
search procedure in most cases which may be infeasible in
terms of computation for certain resource-constrained applica-
tions. Thus, an alternative and less compute-intensive model
design method known as neural architecture search (NAS) is
being widely used currently. Modern NAS approaches are
based on reinforcement learning (RL) that was introduced
in [9] and [10].

The first NAS setup was introduced in [9] that proposed
a search strategy based on RL to find the best parame-
ters of an RNN. This was later extended to CNNs in [10]
where the authors proposed a sequential model-based opti-
mization (SMBO) approach along with a reinforcement algo-
rithm that searches for cells to find the best configuration.
This process involves searching for constructs with high
dimensionality while a surrogate model learns and adapts the
results for the constructs to guide through the structure space.
References [10] and [11] introduces two types of cells: a
normal cell and a reduction cell. The normal cell maintains the
input dimensionality while the reduction cell decreases spatial
dimensions to reduce complexity. The only thing that varies
in CNN architectures is the number of normal and reduction
cells, which is determined by a controller RNN or the RL algo-
rithm. The ImageNet framework used in NASNet [11] uses the
organization of both these cells where the final architecture is
a stacked version of these basic blocks. The upside to this
approach is that it allows flexibility as architectures coming
from cells can be conveniently transferred to other datasets by
simply changing the number of cells and filters [11]. Moreover,
the size of the search space is reduced since the cell-oriented
search strategy consists of shallow networks compared to large
architectures.

Even though this strategy of determining the best model
is efficient, it does not consider other model constraints
such as model size and latency for mobile or edge devices.
This is addressed in the works of DPP-Net [12], Pareto-
NASH [13], MoNAS [14], RNAS [15] and MnasNet [16],
where the authors define this as an optimization problem and
find the most compatible setting for implementation. MnasNet
is such an automated mobile neural architecture search (Mnas)
approach, which also considers model latency to identify a
configuration that can achieve a feasible trade-off between the
parameters of interest. MnasNet follows a similar RL based
search strategy as adopted in [11].

The popularity of using NAS has led to this being used as a
profiling technique for mapping hardware power and latency
performance. An automated algorithm-hardware co-design
scheme is introduced in [17], where the authors search for the
best parameters for both software and hardware deployment to
boost inference accuracy and energy efficiency. This approach,
also known as Codesign-NAS, formulates an optimization
problem that has multiple objectives based on different ways
of iterating through the search space. More specifically, the
authors aim to find a general formulation to automatically
find the best algorithm-hardware pairs through RL while opti-
mizing the objective functions of area, latency, and accuracy.
In line with that, the authors in [17] follow the NASBench
search space used in [18] to develop the CNN search space
and find the precise points to be used as the database for
Pareto-optimal point search.

The modeling process for NAS can involve advanced
techniques like RL and RNN based learning or more basic
approaches like regression and linear programming. In [19]
and [20] the authors aim to profile and minimize the FPGA
energy consumption of DNNs through a regression-based NAS
approach where the optimization parameters in consideration
are accuracy, power, and energy. There lies a sweet spot
between accuracy and model performance in terms of CNNs.
Thus, a resource-bound FPGA will perform best when this
sweet spot is perfectly utilized. To achieve this, the authors
in [19] create an experience space of inference accuracy for

536 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 11, NO. 4, DECEMBER 2021

Fig. 3. The regression based (q, s) NAS in [19] iterates through different
combinations of scaling (s) and quantization (q) of the layers to model the
accuracy space of the network. With a network of optimized (q) and (s) set, the
regression based method iterates through different combinations of processing
engines (PEs) and MAC units (MACs) to model the energy of the optimized
configuration.

different configurations of VGG-16 architecture on the SVHN
and CIFAR-10 dataset. The different configurations correspond
to different scaling (s) of filters and quantization (q) of the
layers and thus they name it as (q, s) NAS. From the generated
experience set the authors model the accuracy results for the
configurations through the non-least squares method of poly-
nomial regression. This provides a contour for the accuracy
space and allows inference of unknown combinations of scal-
ing and quantization. Once the architecture to be implemented
is decided, the authors iterate through different combinations
of processing engines and MAC units and create an experience
space for power consumption of the hardware. At this point,
the authors model the FPGA power consumption based on
the power consumption of the feature maps, multiplication
operations, logic, and static power of the device.

Thus, the regression-based approach shown in Fig. 3 con-
siders different combinations of q and s to generate the model
experimental setup. With the optimum q and s decided from
an accuracy perspective, the technique looks for the best
possible combinations of PEs and MACs through the hardware
experimental setup. In this way, the approach determines
the optimal unknown variables for a given network so that
it can be streamlined for energy-efficient implementation.
Along with this, it can also utilize input resolution (r) as an
independent variable instead of quantization and scaling which
can lead to different optimization procedures for (r, s) NAS
and (q, r) NAS. Table I shows the a brief summary of the
aforementioned NAS techniques based on different strategies
and their performance on benchmark datasets.

B. Sparsification

The hardware benefits (e.g., energy, latency reduction)
obtained from the sparse neural network could be different
with various sparsification schemes. In general, network spar-
sification consists of two different categories: weight pruning
and activation pruning. To establish a deeper understanding of
sparsity in hardware acceleration, we investigate a series of
recent sparsification strategies from algorithm and hardware
perspectives.

TABLE I

A SUMMARY OF POPULAR NAS METHODS

1) Weight Pruning Framework: The pioneering research
works have shown that DNNs can still retain the perfor-
mance even if plenty of network weights are removed [21].
Mathematically, let’s assume a neural network f (W) where
f and W represent the model architecture and weights.
Pruning the neural network entails generating a sparse model
f (W � M), where M ∈ {0, 1} is the binary mask that
forces a certain amount of “unimportant” weights to zero.
The accuracy degradation caused by the pruning often requires
further training (fine-tuning) to recover the accuracy.

More recent research demonstrated the effectiveness of
training a sparse candidate network f (W0 � M) from the
random initialization weights W0 [22], [23]. Such findings
imply the possibility of pruning the model in an one-shot
manner instead of using the over-parameterized pre-trained
model as the starting point. However, the iterative “searching
and fine-tuning” process is still required.

The pivotal question of weight pruning is: How to gen-
erate the proper binary weight mask M to remove the
unimportant parameters with minimum accuracy degrada-
tion? Regardless of the granularity of sparsity, there are
two typical importance evaluation schemes: (a) score-based
ranking and (b) regularization-based weight penalty. The sim-
plest way to quantify the weight importance is using the
absolute magnitude as the significance score, e.g., compare
the scores either layer-wise [24] or model-wise [22] then
remove the weights with the lowest importance. Furthermore,
the magnitude-based score is also valid for the dropout-based
sparsification method [25]. Besides the score-based pruning,
exploiting the sparsity via regularization [26] during training
enables the model to proactively find the optimal sparse pattern
by penalizing the unimportant weights close to zero.

2) Activation Sparsification Framework: Storing the inter-
mediate activation/feature map in hardware usually consumes
more memory space than the weights. As the weight kernel
slides over the feature map, the partial sum computation
requires frequent memory access. Therefore, exploiting the
activation sparsity could induce more energy and latency
reduction compared to static weight pruning. In addition to
the memory savings, one of the most favorable advantages
of activation pruning is that the sparsity of the feature map

MAZUMDER et al.: SURVEY ON OPTIMIZATION OF NEURAL NETWORK ACCELERATORS 537

enables the hardware to allocate the computation selectively.
Characterizing the uninformative features with the sparse
representation allows the hardware to spend less computational
resources on the corresponding canonical features, leading to
improved computational efficiency.

Early studies investigated the prunability of the
neurons (feature maps) via stochastic neuron dropout [27],
magnitude-aware pruning [28], or regularization-based
solver [29]. These activation sparsification methods require
the complete activation computation before pruning, which
cannot simplify the computation for the current layer.
As the CNN models get deeper and wider, the same feature
channel could demonstrate different importance for different
input samples. Such potential data-dependent channel-wise
redundancy motivates researchers to exploit the activation
sparsity along the channel dimension in a dynamic manner.

3) Element-Wise Pruning: In general, it is unlikely that
the redundant neural network parameters are concentrated in
a specific layer or feature channel. The widely distributed
redundancy is usually removed through the highly selective
sparsification methods. Element-wise pruning considers each
weight as a single element and forces the unimportant parame-
ters to zero. Some prior works use L1 norm as an importance
score to evaluate the significance of the weights [24], [30].

The success of magnitude based pruning is built upon the
assumption of “magnitude-equals-significance” [31]. However,
the heuristically selected pruning ratio and sparsity thresh-
old could be sub-optimal. To compensate the limitation of
the magnitude-based pruning, the recent score-based pruning
methods evaluate the significance of the weights by con-
sidering the distortion that is caused by pruning out the
weights [32].

On the hardware side, element-wise pruning can achieve
high sparsity with the cost of large index memory storage and
irregular memory access. Although some of the recent DNN
accelerators support the element-wise sparsity with special
hardware designs, employing the non-structured sparsity to
hardware might be naturally cumbersome for emerging effi-
cient computational platforms such as SRAM or RRAM-based
in-memory computing (IMC) hardware [33]–[35].

4) Structured Pruning: Structured pruning [36], [37] elim-
inates the unimportant weights in a group-wise manner and
allows the resulting sparse model to have better hardware
compatibility due to the negligible sparse index overheads. The
structured weight sparsity empowers the model to skip compu-
tations with respect to the processing elements (PEs), leading
to the energy and latency reduction. Similar to element-wise
pruning, the essence of structured pruning is removing the
unimportant weights in a larger granularity. The pruning struc-
ture can be flexibly defined among the different dimensions of
the convolution layer. Fig. 4 shows the typical pruning granu-
larities with different group selections. Filter-wise pruning [38]
removes the filters with small l1 norm. However, the pruning
sensitivity can be varied for different layers and determining a
proper pruning ratio for different layers could be challenging.
On the contrary, the regularization-based pruning algorithm
aims to automatically find a proper layer-wise sparsity during
the training process. Group Lasso [36] penalizes the weight

Fig. 4. Different pruning granularities for weight pruning, where k and Cin
represents the kernel size and input channel size, respectively.

groups Wg by adding the corresponding l2 norm to the loss L .
By doing so, the sparsity searching problem now becomes an
optimization task.

L̂ = L (W)+ λ

G�
g=1

||Wg||2, (1)

Specifically, exploiting the sparsity via regularization can
be referred to as a sparse regression problem [39], group
Lasso relaxes the sparsity constraint with the differentiable
l2 norm so that the stochastic gradient descent (SGD) can be
employed as the optimization tool. Alternatively, Alternating
Direction Method of Multipliers (ADMM) [40] finds the
optimal structured sparsity using both SGD and analytical
solver. Compared with the original group Lasso algorithm,
ADMM achieves 3.2× compression ratio improvements based
on AlexNet with the ImageNet dataset. In practice, tuning the
optimal group Lasso penalty level for the targeted sparsity
could be time-consuming. On the other hand, a proper
layer-wise pruning ratio is also concealed for ADMM before
training. To address this, the recent works focus on the
global optimization for different sub-networks with different
accuracy-sparsity trade-off [41].

For the hardware implementation, different edge-AI hard-
ware could have different architectures. Naïvely pruning the
model with arbitrary structures might not be able to achieve
the theoretical performance with the given hardware. Moti-
vated by this, various hardware-aware pruning algorithms
have been proposed. AMC [42] leveraged reinforcement learn-
ing by using both accuracy and hardware resources as the
reward to compress the model. Cluster pruning [43] first opti-
mizes the filter cluster size based on accuracy and inference
latency changes, then prunes the clusters to maximize the
hardware performance. On the other hand, the jointly opti-
mized algorithm-hardware design aligns the structured sparsity
together with the hardware architecture. With the properly
designed crossbar mapping scheme, the high structured spar-
sity obtained from the small group size can be utilized to
improve the energy efficiency of RRAM-based IMC [44].

5) Dynamic Pruning: As opposed to static weight pruning,
dynamic pruning exploits the sparsity among the activations.
Generally, the pruning granularity can be categorized into
1) element-wise, 2) channel-wise, or 3) block-wise sparsifica-
tion. Since the importance of the channels varies for different
input features, the essence of dynamic pruning is activating the
computation for the salient features while ignoring the trivial
characteristics. Therefore, the most important step of dynamic
pruning is predicting the feature salience before computing the
output feature map.

538 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 11, NO. 4, DECEMBER 2021

TABLE II

POPULAR NETWORKS UTILIZING SPARSIFICATION AND QUANTIZATION
FOR IMAGE CLASSIFICATION

Unlike static weight pruning where the importance could
be directly derived from the magnitude scores, the feature
maps contain a large amount of high dimensional information,
which usually requires gating or encoding to generate the
binary decision mask or low dimensional salience vectors.
Channel gating neural network (CGNet) [45] first executes
a subset of convolution layers then passes the resulting par-
tial sum through a dynamic gating function to generate the
element-wise decision masks for the rest of the computa-
tion. However, the activated input channels of the CGNet is
inconsistent for different output channels, leading to inefficient
data reuse. Furthermore, the non-differentiable gating function
requires complex approximation during training. The hard
gating of the CGNet has been replaced by either a tunable
threshold [46] or ReLU function [47], [48], while the saliency
predictors are implemented by the light-weight CNN or FC
layers. Among all these evolved algorithms, FC layers have
less computational costs compared to light-weight CNNs.
However, incorporating fully connected layers as the saliency
predictor requires dimension reduction (e.g., average pooling)
on feature maps [47], [48], which also could be expensive for
hardware implementation.

Compared to static weight pruning, implementing dynamic
sparsity requires extra computation, which introduces addi-
tional memory and power consumption. Thus, the trade-off
between dynamic pruning overhead and network performance
should be wisely considered in future research.

C. Quantization

The perennial problem of quantization is particularly rel-
evant whenever memory and/or computational resources are
severely restricted, and it has been investigated in many
DNN models in computer vision, natural language processing,
and related areas. Even though binary and ternary networks
reduce the model size significantly, there is also considerable
accuracy loss due to the compression. In practice, inter-
mediate formats such as 16-bit and 8-bit full precision to
mixed-precision formats are comprehensively used. Table. II
denotes the popular networks that utilize different quantiza-
tion and sparsification strategies for image classification. For
reference, the ResNet-18 network loses around 14% accuracy
when it goes from ternary to binary networks as shown in
Table. II. On the other hand, VGG-16 with 16-bit fixed point
precision can reach near state-of-the-art accuracy on ImageNet
albeit with 16× the model size compared to binary networks.
Moving from floating-point representations to low-precision

fixed integer values represented in four bits or less holds
the potential of reducing the memory footprint and latency
by a factor of 16× or more, and reductions of 4× to 8×
are readily realized in practice in these applications. In this
section, we survey approaches to the problem of quantizing
the numerical values in DNN computations, covering the
advantages/disadvantages of current methods.

1) Low-Bit Width Networks: Micro-AI inference devices
have extremely low memory space for storing the weights and
data for DNN models. That is why reducing the data bit-width
to the extreme extent is a very popular and demanding task
during DNN inference. The most severe quantization method
is binarization, which reduces the memory requirement by
32× through constraining the quantized values to a 1-bit
representation. A uniform binarization strategy, on the other
hand, would result in severe accuracy loss. As a result,
a substantial body of literature has presented several solu-
tions to this problem. BinaryConnect [53], which constrains
the weights to either +1 or −1, is an important study in
this area. To replicate the binarization effect, the weights
are preserved as actual values and binarized only during
the forward and backward passes in this method. Binarized
neural networks [54] (BNN) takes this concept a step further
by binarizing both the activations and the weights. Because
the expensive floating-point matrix multiplications can be
substituted with lightweight XNOR operations followed by
bit-counting, binarizing weights and activations together offer
the added benefit of reduced latency. Another noteworthy
work [51] proposes Binary Weight Network (BWN) and
XNORNet, which offer improved accuracy by integrating a
scaling factor to the weights.

Furthermore, motivated by the fact that many learned
weights are near to zero, attempts to ternarize networks have
been made by restricting the weights/activations with ternary
values, such as +1, 0 and −1, specifically allowing the quan-
tized values to be zero [55]. Ternarization, like binarization,
dramatically reduces inference latency by avoiding the unnec-
essary need for costly matrix multiplications. Later, Ternary-
Binary Network (TBN) [56] demonstrated that integrating
binary network weights and ternary activations may reach the
best accuracy and computational efficiency trade-off. Apart
from the memory benefits, binary (1-bit) and ternary (2-bit)
operations may frequently be implemented efficiently with bit-
wise arithmetic, resulting in significant performance gains over
higher precisions like FP32 and INT8.

Because uniform binarization and ternarization methods
often result in considerable accuracy loss, especially for
DNNs for large-scale datasets such as ImageNet, several
ways to mitigate accuracy loss in extreme quantization have
been presented [57]. Moreover, several works specifically
exploit low-precision quantization to reduce the inference time
latency. DoReFa-Net [52] stands out to accelerate the training
as well by quantizing the gradients in addition to the weights
and activations.

For many CNN models used in computer vision tasks,
extreme quantization has been successful in dramatically low-
ering inference/training time as well as model size. There
have been recent attempts to apply this concept to Natural

MAZUMDER et al.: SURVEY ON OPTIMIZATION OF NEURAL NETWORK ACCELERATORS 539

Language Processing (NLP) tasks [58] as well. Extreme quan-
tization is emerging as a powerful method for moving NLP
inference tasks to the edge, given the prohibitive model size
and inference latency of state-of-the-art NLP models that are
pre-trained on a significant quantity of unlabeled data.

2) Mixed Precision Networks: It is prominent that
lower precision quantization improves hardware performance.
However, uniform quantization of a DNN model to very low
precision might result in severe accuracy loss. Mixed preci-
sion (MP) quantization, where different bit precision would
be allocated to different layers based on their importance,
could be beneficial in addressing this problem. More important
layers would be assigned higher precision, and comparatively
less important layers would be in lower precision. However,
the search space for selecting this bit precision per layer
grows exponentially with the number of layers, making it chal-
lenging to implement. To address this massive search space,
various techniques have been proposed. In [59], MP con-
figuration searching problem is formulated as NAS-based
problem where Differentiable NAS (DNAS) was utilized to
explore the search space efficiently. Reference [60] offered a
reinforcement learning (RL) based method to automatically
calculate the quantization policy, where the authors employed
a hardware simulator to incorporate the hardware accelerator’s
data into the RL agent feedback. Reference [61] extends the
method proposed in [60] considering the limited memory and
computational characteristics of tiny edge micro-controllers.
Exploration-based methods like [59]–[61] have the drawback
of requiring a lot of computational resources and being
extremely sensitive to hyperparameters and even initialization.
HAWQ [62] proposes a method based on the model’s second-
order sensitivity for automatically finding the MP settings,
which opens up a completely different approach to explore
the MP search space. HAWQv2 [63] was extended to MP
activation quantization which was presented as 100× faster
compared to the RL-based [60] approach. HAWQ-v3 [64]
introduced integer only hardware-aware quantization, which
includes Integer Linear Programming (ILP) based approach to
find the best MP configuration considering application-specific
constraint (e.g., model size or latency).

3) Quantization Frameworks (System Integrator Tools and
Profiler): DL compilers have become increasingly popular in
recent years as a flexible solution to optimizing and deploying
DL models. Apache TVM [65], Glow [66] and XLA [67] are
three DL compilers that provide optimization and code cre-
ation for different hardware platforms. On the other hand, Intel
nGraph [68], Nvidia TensorRT [69] and Xilinx Vitis AI [70]
are compilers that focus on a single class of hardware systems.
Also, recently introduced Q-Keras [71] library extended the
Keras library to enable quantization-aware training with MP
settings for conventional DNN layers.

IV. MICRO-AI HARDWARE OPTIMIZATION

The design techniques and optimization strategies discussed
thus far only considered the development of an efficient model
that provides a reasonable trade-off for different optimization
criteria. This, however, represents the aspect of a design
from the software perspective only. Actual deployment of

such architectures onto micro-AI platforms requires unique
hardware design techniques that will lead to fast execution
and low power implementation of the models. In this section,
we look at accelerator designs for different neural networks on
both MCU (Micro-controller Unit) and FPGA, review ways
to improve their latency, and analyze different quantization
approaches in place to make them lightweight and suitable
for micro-AI implementation.

A. MCU Based DNN Acceleration

Micro-controllers are severely limited by their storage
capacity to facilitate DL frameworks in their design. Hence,
there needs to be a comprehensive reduction of memories from
both the network and the libraries that are being used to fit
the memory budget.

There is limited literature for DL inference on micro-
controllers. Most notable micro-controller-based works include
ShuffleNet [72], Hello Edge [7], SpArSe [73], IoTNet [74]
etc. ShuffleNet [72] considers CNN architectures for mobile
devices with very limited memory where the computation
workload is only 40 MFLOPs (mega floating-point operations)
compared to AlexNet. Hello Edge [7] focuses on keyword
spotting with the Google speech commands dataset using
depthwise separable convolutions for memory-limited micro-
controllers. In SpArSe [73], the authors use a NAS-based
approach to find superior CNN architectures by taking into
account the memory constraints of micro-controllers. The
aspect of quantization on micro-controllers is addressed in
the work of [75] where the authors exploit low-bit width
quantization down to 2-bit integer-only operations to deploy
the MobileNetV1 model onto the STM32H7 micro-controller.
IoTNet [74] on the other hand compromises accuracy for lower
computational complexity in a different fashion. The authors
in this case factorize 3 × 3 convolution into 1× 3 and 3× 1
standard convolution to reduce the number of operations.

Several frameworks and integrated libraries allow DNN
acceleration on microcontrollers, namely, TensorFlow-Lite
Micro [77], CMSIS-NN [78], and Micro-TVM [65]. These
frameworks perform network optimization by considering the
best parameters for a memory-efficient design. However, the
optimization adopted by these frameworks has a few lim-
itations. First, these frameworks depend on an interpreter
for optimization during run-time which increases memory
consumption. Second, the optimization is on a layer basis
rather than a network basis, which makes it difficult for
these frameworks to save further memory by considering a
network-oriented memory budget.

These issues have been addressed in [76] where the authors
propose a system-algorithm co-design framework to opti-
mize the TinyNAS architecture. They utilize the inference
library named TinyEngine to reduce memory efficiently and
deploy ImageNet scale DNN on these resource-constrained
devices. As shown in Fig. 5, [76] demonstrates the efficacy
of their approach by comparing their latency and memory
usage against state-of-the-art integrated inference libraries
(i.e. MicroTVM Tuned, CMSIS-NN and TF-Lite Micro) for
MCU acceleration. The performance boost brought about by

540 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 11, NO. 4, DECEMBER 2021

Fig. 5. The reduction in memory usage and latency of TinyEngine [76]
when compared to other MCU based inference engines for inference on the
CIFAR-10 dataset.

TinyEngine relates to the implementation being on average
3× faster than TF-Lite Micro and consume 3.1× less peak
memory usage compared to MicroTVM Tuned. Furthermore,
the TinyEngine reduces memory usage by 2.1× in comparison
to the interpreter based CMSIS-NN library utilization.

B. Digital Accelerators

Inference engines are usually feed-forward networks since
they require no back-propagation and only depend on trained
weights to determine the prediction of an input sample. Such
a feed-forward setup allows several advantages concerning
different design perspectives. First of all, the whole archi-
tecture can be prototyped to have a unique data precision
which reduces the amount of design logic. Secondly, since
the data flow is on one way only, the layers and filters
used in the layers can be parameterized easily to allow the
feasibility of different sets of implementations. And finally,
the overall amount of data access and memory footprint will
be considerably smaller compared to training networks which
need back-propagation and intermediate weights. Such archi-
tectures are also known as systolic architectures because the
arrangement of the processing engines, mimics the rhythmical
data flow system. Traditional feed-forward engines are based
on the commonly used CNN and RNN models. More details
about the general setup of such accelerators are elaborated
below:

CNN accelerators replicate the kernel traversal operation of
CNNs to generate intermediate feature maps. The operation of
the design is based on Equation 2.

Om,n =
Cin�
c=1

⎛
⎝

F�
f=1

�
I f+mS,cWn,c, f

�
⎞
⎠

f or m = 0 . . . N − 1, n = 1 . . . Cout (2)

Here, I , O, W , C , and F correspond to input, output,
weights, channels and filters respectively and S signifies the
stride for the filters. The general CNN accelerator architecture
contains the components shown in Fig. 6 and are detailed
below.

PE array comprises the main logic modules for an accel-
erator design. This is where essentially the computations
occur between the feature map values and the weights. The
operation of conventional CNN accelerators is usually easier

Fig. 6. The general framework for a CNN accelerator consists of memory
units (feature map, output and weights), n number of processing engines (PE)
each of which houses MAC units and activation logic for output formulation
and parallelization, and a control logic that generates the addresses to be
extracted from the feature map and weight memory.

to parallelize. In essence, the structure of the PE array defines
the parallelization technique that is adopted in the design. Each
PE array block also contains at least one MAC unit along with
the activation logic to truncate the data values to fixed-point
representation. Depending on the size of the workload and
scalability of the design there can be different combinations
of MAC units and PEs. In addition, the activation function
that is typically used is ReLU or hyperbolic tangents.

MAC units are generally a combination of adders and mul-
tiplier units. The fixed-point multiplication operation requires
the partial sums to be stored temporarily in a register and then
fed to the adder along with the next set of multiplication output
to generate the result of one specific patch of the input filter.

Address generator units conform to the precise addressing
procedure for convolution and fully connected layers. This
module extracts the indexes of the feature map values for 2D
or 3D convolution and feeds it to control logic to fetch the data
from the memory units. Furthermore, the addressing process
also considers variable striding of the input filters and padding
of the generated patches.

Memory units store the feature map values, weights values,
and temporary results in the feature map memory, weight
memory, and output memory respectively. The traditional way
of keeping memory accesses limited is to swap memories per
process termination of every layer belonging to the network.

Some of the representative works following the systolic
array architectures for CNN implementation are detailed in
Table III. In [79], the authors present a CNN accelerator for
time-series classification on MFCC (Mel Frequency Cepstral
Coefficients) processed data. In [80], the authors introduce the
Winograd algorithm and a fusion architecture to maximize the
throughput of the CNN accelerator. Following this, authors
in [81] proposed an automated workflow called fpgaConvNet
that maps CNN models on FPGAs by considering hard-
ware design space constraints. The key goal of accelerator
implementation is to have high energy efficiency, and this
is achieved in Eyeriss [50] where the authors introduce a
new data-flow called row stationary on spatial architectures.
The aspect of deploying large CNNs on to medium density
and low-density FPGAs has been explored in Angel-eye [82]
and lite-CNN [83] where the authors consider quantization
of the data bits down to 8-bit fixed point precision. Recent

MAZUMDER et al.: SURVEY ON OPTIMIZATION OF NEURAL NETWORK ACCELERATORS 541

TABLE III

POPULAR CNN AND RNN ACCELERATORS IN LITERATURE

works [84], [85] also implemented reconfigurable CNN accel-
erators for object detection models such as SSD and YOLO
on the Pascal VOC and COCO datasets.

On the other hand, RNN accelerators are usually designed
serially as showed in the works of [86]–[88]. RNNs have
straightforward addressing unlike convolution and only require
a serial pipeline to implement the gate logic. The MAC units in
an LSTM accelerator use kernel memory and recurrent kernel
memory to perform the matrix-vector multiplication of the
equations described in [89]. The activation logic in the case
of LSTM is hard sigmoid and hard tanh.

The systolic array inference engines can be further opti-
mized to allow better flexibility, improve run-time and finally
to ensure energy-efficiency. To this end, we analyze the
processes of fast convolution, zero skipping, data sharing and
low precision implementation in the next set of subsections.

1) Fast Convolution: Digital accelerators are designed to
make the inference process of bulky DNNs fast and avoid
the costly usage of GPUs. This need for fast computation has
led to various techniques being explored to make CNNs less
compute-intensive. Two of these fast convolution algorithms
are known as fast Fourier transform (FFT) and Winograd.

FFT Convolution has a different spatial traversal pattern
than traditional convolution. According to [90], FFTs of the
image and the kernel can produce a tiled convolution algorithm
that mimics the original process. In this case, the transforma-
tion matrices are replaced with FFT of both the image and the
kernel. The FFT counterparts then go through pointwise multi-
plication followed by the inverse Fourier transform of the mul-
tiplication result to generate the feature map of the same shape.
This reduces the arithmetic computational complexity which
was further refined by fbfft [91] with regards to GPU imple-
mentation. A library that considers FFT convolution of kernels
and images was later introduced in cuDNN [92] by NVIDIA.
The efficacy of the FFT algorithm for deployment on embed-
ded systems was first evaluated in [93] where the authors
showed that such an algorithm can result in considerable
storage reduction while not sacrificing accuracy significantly.

For an N × N image and K × K filter, the compu-
tational complexity in traditional convolution is given by

O(N2 K 2), whereas FFT has a computational complexity of
only O(N2logN), which is much smaller compared to that
of traditional convolution layers. One bottleneck of the FFT
convolution is that with smaller filters, it is not as fast when
compared to larger filters. This aspect is addressed in [94]
with input splitting where the data is divided into chunks
and called fast Fourier transform overlap-and-add (FFT-OVA),
which has the computational complexity of O(N2logK). The
implementation of the FFT algorithm onto resource-bound
FPGAs in the form of a hardware accelerator is delineated
in [95], where the authors considered two variants of the
FFT convolution along with the vanilla convolution operation
deployed through the SPARCNet [96] design for the ResNet-
20 architecture with the CIFAR-10 dataset.

Winograd is based on the minimal filtering algorithm and
was first introduced to accelerate CNNs in [97]. The 2D
convolution of a feature map X with a kernel K through the
Winograd algorithm produces the output feature map of Y
using Equation 3.

Y = AT [(G XGT)� (B X BT)]A (3)

Here, A, G, and B correspond to the transformation
matrices used to generate the Winograd output and �
denotes element wise multiplication of the matrices. The
shape of these matrices are dependent on the shape of
X and K .

According to [97], the multiplications required by the
minimal filtering algorithm for one dimensional F(m, r) is
signified by m + r − 1 where m is the size of the output and r
denotes the r-tap FIR filter. This also holds for two dimensions
when the r-tap filter and output is represented by F(m × n,
r × s). In this case, the total multiplications amount to (m +
r − 1)(n + s − 1). For a 3 × 3 feature map and 2 × 2 filter,
F(3 × 3, 2 × 2), the total multiplications for a traditional
convolution is 32 × 22 = 36 which on the other hand is only
(3+ 2− 1) × (3+ 2− 1) = 16 for the Winograd algorithm.
This allows a 2.25× reduction in computational complexity
of the network that can be exploited in hardware to introduce
fast frameworks. However, the reduction in the computational
complexity with the Winograd algorithm is largely dependent

542 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 11, NO. 4, DECEMBER 2021

on the size of the filters that are being considered. This
algorithm is particularly fast when the filters in question are
of a small shape and need a lot of strides to iterate through
the whole image. One hindrance with the Winograd algorithm
is that it eradicates the data sparsity of pruning approaches.
To accommodate the Winograd algorithm with sparsity there
needs to be a transformation in the activation functions. In line
with this, in [98] the authors introduce low-latency sparse
Winograd convolution (LSW-CNN) that decreases the latency
of the VGG-16 network by 5.1×. On the other hand, [99]
used an alternate sparsity exploitation method called sub-row
balanced sparsity pattern (SRBS) along with the Winograd
algorithm to reduce latency and irregular memory accesses.
Another issue with accelerators that try to exploit sparsity with
Winograd is that they suffer from stable load balancing. This
issue is considered in [100] where the authors use dynamic
scheduling to improve the load balance. The modifications
allow the accelerator in [100] to achieve the performance
of 7.6 TOP/s with the VGG-16 architecture. A systolic PE
structure called WinoPE is also introduced in [101] that allows
the flexibility of implementing different kernel sizes for the
complex Winograd convolution. WinoPE outperforms state-
of-the-art designs in terms of throughput and DSP efficiency
with 1.33 GOPS/DSP on the ZCU102 FPGA.

2) Zero Skipping: As discussed in Section III-B, vari-
ous sparsification algorithms introduce zero values into both
weights and activation with different granularities. On the
hardware side, the sparse elements/groups can be further
utilized to skip the convolution operations partially. However,
efficiently locating the sparse elements could be challenging
for hardware implementation.

For both weight and activations, properly saving the sparse
patterns is necessary before the efficient computation. Storing
the sparse matrix with a simple coordinate format could
be a huge storage burden. Various simplified sparse format
reduces the storage costs [87], which allows the accelera-
tors to efficiently perform the computation by skipping the
sparse elements among weights and activations [87], [102].
However, converting the sparse coordinates to the compressed
indexes (e.g., compressed sparse row/column format) still
leads to non-negligible index memory, which causes irreg-
ular memory access [103]. To that end, structured sparse
patterns have been promoted as an attractive solution, which
minimizes the index storage, enables regular memory access,
and enhances hardware acceleration with the simplified zero
skipping patterns [49].

Besides the efficient pruning granularity and data compres-
sion techniques, the recent works aim to eliminate the sparse
indexes completely. Cyclic sparse CNN [49] sparsifies the
dense CNN model into the structurally cascaded sparse layers,
resulting in full connectivity between the input and output,
which FPGA can efficiently implement without any sparse
indexes. Such a similar fashion is also feasible for element-
wise sparsity. FixyFPGA [104] encodes every weight element
as a fixed-weight multiplier (scaler) in hardware design. As a
result, pruning out weight elements is equivalent to removing
the corresponding hardware operands without introducing any
index overhead.

3) Data Sharing: For efficient implementation of acceler-
ators, different data-flow techniques have been presented to
increase the reuse of data read from memories higher up
the hierarchy. Since memory access cost increases as the
hierarchy level increases, data reuse becomes a vital aspect
of an accelerator design.

Within a DNN accelerator, the MAC modules, require three
inputs (i.e., input feature map, filter weight value and the
corresponding generated partial result) to generate a single
output. The generated output is stored back either as a partial
sum or as the result of convolution. Since contents on an FPGA
are read from memories, the worst-case scenario occurs when
all the three data values must be read from the memories.
Without an efficient memory hierarchy and data flow design
all the reads will have to come through the external DRAM (or
large on-chip BRAM). Considering the sheer number of MAC
operations that must be performed, these accesses will greatly
affect the performance, energy efficiency and throughput of the
accelerator. Additionally, since MAC operations on an FPGA
can be parallelized, parallel compute paradigms including
temporal and spatial architectures are explored for highly
parallel solutions. Temporal architectures aim at employing
the Single Instruction Multiple Data (SIMD) or the Single
Instruction Multiple Thread (SIMT) execution model. CPUs
and GPUs are generally categorized under the temporal archi-
tecture. Spatial architectures on the other hand, employ data
flow techniques where the data in the ALUs (Arithmetic
Logic Units) are shared amongst each other in a well-defined
manner. FPGA based accelerators, ASIC based accelerators
are common examples of such spatial architectures.

In DNN accelerators, the different data-flow techniques
revolve around the reuse of 3 values (feature maps, filter
weights and the generated intermediate partial sums). Authors
in [1] use these reuse techniques as, feature map reuse, filter
reuse and convolutional reuse. In feature map reuse, a single
feature map is selected and partial sums are generated by
processing the single feature with multiple filters. This
allows the reuse of a single feature that has been read
from the memory. Similarly, in the case of filter reuse,
as shown in Fig. 7(a) (top), a single filter is selected and
partial sums are generated by processing the single filter with
multiple features. This scheme allows the reuse of a single
filter that has been read from the memory. Finally, in case
of the convolutional reuse, as shown in Fig. 7(b) (top),
corresponding feature map and filter weights within a single
channel are utilized in all combinations to generate the
final weighted sum result for that channel. By storing and
efficiently reusing data within the memory hierarchy, the
number of times accesses are made to costlier memories can
be greatly reduced. Additionally, authors in [1] and [105]
also provide different data-flow schemes that exploit the
aforementioned data reuse opportunities,

In weight stationary data-flow, the aim is to reuse the filter
values read from the larger memory. In weight sharing, the
energy cost for accessing weights is reduced. This is achieved
by reading a set of weights into the register files in the PE
array and holding the weights here until all the processing
corresponding to that set of weights has completed. Thus,

MAZUMDER et al.: SURVEY ON OPTIMIZATION OF NEURAL NETWORK ACCELERATORS 543

TABLE IV

FRAMEWORKS FOR MAPPING LOW-PRECISION DNN ON FPGA

Fig. 7. Data Sharing and data-flow techniques explored. (a) Filter reuse
opportunities and Weight Stationary data-flow technique exploiting the filter
reuse. A single Weight (WS) is stored in the PE register files while the
Intermediary Partial Sums (IPS) are streamed and the Feature Maps (FM)
are broadcast. (b) Convolutional Reuse opportunities and Output Stationary
data-flow technique exploiting Convolutional Reuse. The Intermediary Partial
Sums (IPS) summing up to a single output is stored in the register files in
the PE while the Feature Maps (FM) are streamed and the Weights (WS) are
broadcast.

increasing the reuse of the weights that have been read.
Additionally, while the weights are being held in the register
files, the corresponding features required for the multipliers in
the PE array is broadcast from the memory immediately higher
in hierarchy. The partial sums to the adders is streamed while
the new partial sums are accumulated across the PE array.
Fig. 7(a) (bottom) represents this technique.

In output stationary data-flow, the aim is to cut down on
the energy cost for reading and writing the partial sums to and
from the memory. This is achieved by holding the partial sums
that account up to a single output activation in the register file
while the filters and feature activations are reordered in the
PE array. One of the common approaches to accomplish this
is to broadcast the weights to the PE array while the features
across the PE array are streamed. There are additional delay
registers to delay the data values in the PE array to make sure
the required data is within the PE array until all processing
related to it is completed. Fig. 7(b) (bottom) represents this
technique.

In the aforementioned data-flow techniques, the memory
hierarchy is divided as, external DRAM (very large memory),
on chip buffer (large memory), internal PE registers (very
small memory). The drawback of such a hierarchical approach
is that while the register files consume very low power when

compared to external DRAM, their area footprint is much more
inefficient. As a result, in the no local reuse data-flow, the
internal PE array has no register files. The PE array in this
case, does not hold any data within it but travel back and
forth from the on-chip memory. This results in a much greater
bus traffic between the buffer and the PE array.

In case of row stationary data-flow„ the aim is to reuse the
data in the PE. Unlike the other techniques the reuse is aimed
at all types of data values within the PEs’ register files. The
operations can be parallelized by assigning a 1-D convolution
to each PE. Each PE holds the contents from an entire row
of the filter while the feature maps are streamed into the PEs.
Within the PEs, MACs are computed and the partial sums
are accumulated. By reusing the contents in the register file
the sliding operations can be mimicked. Additionally, a PE
array arranged in a 2-D matrix fashion can be used to reuse
data more efficiently. This is achieved by reusing the filter
row in each PE along the entire row of the PE array. Also,
the feature activations are shared diagonally within the PE
array. While the weight stationary and the output stationary
techniques consume the least energy for the access of the
weights and the partial sums, the row stationary technique
could offer the least overall energy consumption [1].

4) Low Precision Implementation: Quantization optimizes
parameters at the individual layer level. Replacing the floating
point representation with low-bit and fixed-bit data reduces
bandwidth utilization and memory storage space while also
simplifying calculation and lowering the cost of each oper-
ation, albeit at the expense of accuracy. Nowadays, most of
the general purpose processor architectures have adopted INT8
quantization. It has become a pre-requisite for the micro-AI
devices to adopt at least INT8 bit precision, and further lower
precision as the processing unit allows.

FPGAs are more popular for supporting quantized net-
works with less than 8 bits. BNN and TNN have 1-bit
and 2-bit activations and weights which enables them to
be computed using bit-wise arithmetic. These networks are
well suited for FPGAs, and their memory requirements are
also greatly decreased. However, BNN and TNN produce
much lower accuracy on realistic datasets (i.e. ImageNet). For
example, Xilinx Zynq heterogeneous FPGA platform supports
BNN [106] and FINN [107] inference framework deployed
BNN on a Zynq ZC706 SOC FPGA acquired 12.36M image
classification per seconds allowing around 4% accuracy degra-
dation. Reference [108] introduces fractional activations and

544 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 11, NO. 4, DECEMBER 2021

binarizes the input layer with thermometer encoding which
improves accuracy of BNNs for ImageNet.

TNN [109] uses optimized ternary value multiplication
while deployed on Sakura-X FPGA and achieved 255k
image classification per second with 98% average accuracy.
Both [106] and [109] experimented on MNIST dataset. Ref-
erence [8] introduces a ternary hardware accelerator along
with TNN training framework for efficient processing of
ImageNet scale datasets. Table IV shows recent FPGA works
that implemented low-precision DNNs. All of them are using
2-bits or even 1-bit data precision while still achieving compa-
rable state-of-the-art performance. Another representative low
precision work is [110] where the authors demonstrate the
efficacy of low bit width design in the form of a 4-core AI chip
in 7nm EUV (Extreme Ultraviolet Lithography) technology to
facilitate both training and inference for a variety of fixed point
and floating point precisions. Such specialized low-precision
ASIC and FPGA accelerators will continue to pave the path
for micro-AI inference tasks.

V. SUMMARY AND FUTURE TRENDS

With regards to making networks lightweight, quantization
and pruning of network parameters are the way to go. How-
ever, any sort of compression procedure is associated with
some loss of accuracy. The goal is to find the best trade-off
for compression against accuracy levels. To this extent, one
needs to delve deeper into the quantization levels for individual
networks and figure out which uniform or mixed precision
configuration is the most suitable since networks appear to
have different levels of sensitivity for different compression
processes. The recent structured sparsification methods also
provide more flexibility towards achieving the desired com-
pression and should be used in conjunction with traditional
quantization approaches. For example, AlexNet is compressed
down to 50× its original size in SqueezeNet which allows
it to be implemented via hardware frameworks like Eyeriss
and fpgaConvNet. Similarly, ResNet-18 is shrunk down to
14× its actual size in T-DLA through ternary neural networks.
Such networks can be accelerated through micro-AI devices
when compressed further through the structured compression
approaches. Additionally, one can formulate an optimization
problem with sparsity and quantization variables as constraints
and use the conventional RL-based NAS or the more recent
NAS strategies as a way of coming up with the best config-
uration. About the deployment of the network onto resource-
constrained devices, the goal is to reduce the number of MAC
operations, and thus using the fast convolution techniques
could be one solution. Another aspect that becomes an issue
during real-time deployment is frequent memory accesses that
increase the power envelope. As we have already described
in Section. IV-B.3, data sharing strategies can help in reusing
data from the memory in this regard.

VI. CONCLUSION

The overwhelming use of AI in our everyday life
has brought forth the necessity of DNN accelerators.
However, the issue of high computational complexity and

memory constraints requires DNN accelerator designs
to be energy-efficient without compromising accuracy.
Thus, the creation of such architecture should begin
with a generalized understanding of current optimization
strategies and the potential for those strategies to open
new pathways into accelerator designs. To this extent, this
article surveys several optimization approaches to make
software frameworks lightweight and friendly for micro-AI
deployment. In addition to this, it also points out the current
accelerator design optimization approaches for both FPGA
and MCU implementation. Finally, DNN acceleration remains
an ever interesting and expanding field of research to this day
with opportunities for further innovation.

REFERENCES

[1] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing
of deep neural networks: A tutorial and survey,” Proc. IEEE, vol. 105,
no. 12, pp. 2295–2329, Dec. 2017.

[2] M. Capra, B. Bussolino, A. Marchisio, M. Shafique, G. Masera, and
M. Martina, “An updated survey of efficient hardware architectures
for accelerating deep convolutional neural networks,” Future Internet,
vol. 12, no. 7, p. 113, Jul. 2020.

[3] P. R. Ovi, E. Dey, N. Roy, and A. Gangopadhyay, “ARIS: A real time
edge computed accident risk inference system,” in Proc. IEEE Int.
Conf. Smart Comput. (SMARTCOMP), Aug. 2021, pp. 47–54.

[4] A. Sarkar and M. Rahnemoonfar, “Visual question answering: A
deep interactive framework for post-disaster management and damage
assessment,” in Proc. UMBC Student Collection, Jul. 2021, pp. 1–14.

[5] “Hey Siri: An on-device DNN-powered voice trigger for Apple’s
personal assistant,” Mach. Learn. J., vol. 1, no. 6, 2017. Accessed:
Sep. 30, 2021. [Online]. Available: https://machinelearning.apple.com/
2017/10/01/hey-siri.html

[6] Q. Tang, M. Sun, C.-C. Kao, V. Rozgic, and C. Wang, “Hierarchical
residual-pyramidal model for large context based media presence
detection,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), May 2019, pp. 3312–3316.

[7] Y. Zhang, N. Suda, L. Lai, and V. Chandra, “Hello edge: Keyword
spotting on microcontrollers,” 2017, arXiv:1711.07128.

[8] Y. Chen et al., “T-DLA: An open-source deep learning accelerator for
ternarized DNN models on embedded FPGA,” in Proc. IEEE Comput.
Soc. Annu. Symp. VLSI (ISVLSI), Jul. 2019, pp. 13–18.

[9] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” 2016, arXiv:1611.01578.

[10] C. Liu et al., “Progressive neural architecture search,” in Proc. Eur.
Conf. Comput. Vis. (ECCV), 2018, pp. 19–34.

[11] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 8697–8710.

[12] J.-D. Dong, A.-C. Cheng, D.-C. Juan, W. Wei, and M. Sun, “DPP-net:
Device-aware progressive search for Pareto-optimal neural architec-
tures,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 517–531.

[13] T. Elsken, J. H. Metzen, and F. Hutter, “Efficient multi-
objective neural architecture search via Lamarckian evolution,” 2018,
arXiv:1804.09081.

[14] C.-H. Hsu et al., “MONAS: Multi-objective neural architecture search
using reinforcement learning,” 2018, arXiv:1806.10332.

[15] Y. Zhou, S. Ebrahimi, S. Ö. Arık, H. Yu, H. Liu, and G. Diamos,
“Resource-efficient neural architect,” 2018, arXiv:1806.07912.

[16] M. Tan et al., “MnasNet: Platform-aware neural architecture search
for mobile,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 2820–2828.

[17] M. S. Abdelfattah, L. Dudziak, T. Chau, R. Lee, H. Kim, and
N. D. Lane, “Best of both worlds: AutoML codesign of a CNN and its
hardware accelerator,” in Proc. 57th ACM/IEEE Design Autom. Conf.
(DAC), Jul. 2020, pp. 1–6.

[18] C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and F. Hutter,
“NAS-Bench-101: Towards reproducible neural architecture search,” in
Proc. Int. Conf. Mach. Learn., 2019, pp. 7105–7114.

[19] M. Hosseini, M. Ebrahimabadi, A. N. Mazumder, H. Homayoun, and
T. Mohsenin, “A fast method to fine-tune neural networks for the least
energy consumption on FPGAs,” in Proc. UMBC Student Collection,
2021, pp. 1–6.

MAZUMDER et al.: SURVEY ON OPTIMIZATION OF NEURAL NETWORK ACCELERATORS 545

[20] M. Hosseini and T. Mohsenin, “QS-NAS: Optimally quantized scaled
architecture search to enable efficient on-device micro-AI,” IEEE
J. Emerg. Sel. Topics Circuits Syst., early access, Nov. 15, 2021, doi:
10.1109/JETCAS.2021.3127932.

[21] B. Hassibi and D. G. Stork, Second Order Derivatives for Network
Pruning: Optimal Brain Surgeon. Burlington, MA, USA: Morgan
Kaufmann, 1993.

[22] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding
sparse, trainable neural networks,” 2018, arXiv:1803.03635.

[23] J. Frankle, G. K. Dziugaite, D. M. Roy, and M. Carbin, “Stabilizing
the lottery ticket hypothesis,” 2019, arXiv:1903.01611.

[24] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and
connections for efficient neural networks,” 2015, arXiv:1506.02626.

[25] A. N. Gomez, I. Zhang, K. Swersky, Y. Gal, and G. E. Hinton, “Learn-
ing sparse networks using targeted dropout,” 2019, arXiv:1905.13678.

[26] S. Ye et al., “Progressive DNN compression: A key to achieve ultra-
high weight pruning and quantization rates using ADMM,” 2019,
arXiv:1903.09769.

[27] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

[28] A. Makhzani and B. Frey, “Winner-take-all autoencoders,” 2014,
arXiv:1409.2752.

[29] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very
deep neural networks,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 1389–1397.

[30] M. Zhu and S. Gupta, “To prune, or not to prune: Exploring the efficacy
of pruning for model compression,” 2017, arXiv:1710.01878.

[31] T. Gale, E. Elsen, and S. Hooker, “The state of sparsity in deep neural
networks,” 2019, arXiv:1902.09574.

[32] S. Park, J. Lee, S. Mo, and J. Shin, “Lookahead: A far-sighted
alternative of magnitude-based pruning,” in Proc. Int. Conf. Learn.
Represent., 2019, pp. 1–20.

[33] S. Yin, Z. Jiang, J.-S. Seo, and M. Seok, “XNOR-SRAM: In-memory
computing SRAM macro for binary/ternary deep neural networks,”
IEEE J. Solid-State Circuits, vol. 55, no. 6, pp. 1733–1743, Jun. 2020.

[34] Z. Jiang, S. Yin, J.-S. Seo, and M. Seok, “C3SRAM: An in-memory-
computing SRAM macro based on robust capacitive coupling com-
puting mechanism,” IEEE J. Solid-State Circuits, vol. 55, no. 7,
pp. 1888–1897, Jul. 2020.

[35] S. Yin et al., “Monolithically integrated RRAM- and CMOS-based in-
memory computing optimizations for efficient deep learning,” IEEE
Micro, vol. 39, no. 6, pp. 54–63, Nov. 2019.

[36] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Proc. Adv. Neural Inf. Process.
Syst., vol. 29, D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and
R. Garnett, Eds., 2016, pp. 2074–2082.

[37] D. Kadetotad, S. Yin, V. Berisha, C. Chakrabarti, and J.-S. Seo,
“An 8.93 TOPS/W LSTM recurrent neural network accelerator featur-
ing hierarchical coarse-grain sparsity for on-device speech recognition,”
IEEE J. Solid-State Circuits, vol. 55, no. 7, pp. 1877–1887, Jul. 2020.

[38] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient ConvNets,” 2016, arXiv:1608.08710.

[39] M. Yuan and Y. Lin, “Model selection and estimation in regression with
grouped variables,” J. Roy. Statist. Soc. B, Statist. Methodol., vol. 68,
no. 1, pp. 49–67, 2006.

[40] T. Zhang et al., “StructADMM: A systematic, high-efficiency frame-
work of structured weight pruning for DNNs,” 2018, arXiv:1807.11091.

[41] T.-W. Chin, R. Ding, C. Zhang, and D. Marculescu, “Towards
efficient model compression via learned global ranking,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 1518–1528.

[42] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “AMC: Automl
for model compression and acceleration on mobile devices,” in Proc.
Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 784–800.

[43] C. Gamanayake, L. Jayasinghe, B. K. K. Ng, and C. Yuen, “Cluster
pruning: An efficient filter pruning method for edge AI vision applica-
tions,” IEEE J. Sel. Topics Signal Process., vol. 14, no. 4, pp. 802–816,
May 2020.

[44] J. Meng, L. Yang, X. Peng, S. Yu, D. Fan, and J.-S. Seo, “Structured
pruning of RRAM crossbars for efficient in-memory computing accel-
eration of deep neural networks,” IEEE Trans. Circuits Syst. II, Exp.
Briefs, vol. 68, no. 5, pp. 1576–1580, May 2021.

[45] W. Hua, Y. Zhou, C. De Sa, Z. Zhang, and G. E. Suh, “Channel gating
neural networks,” in Proc. 33rd Int. Conf. Neural Inf. Process. Syst.,
2019, pp. 1886–1896.

[46] G. Shomron, R. Banner, M. Shkolnik, and U. Weiser, “Thanks for noth-
ing: Predicting zero-valued activations with lightweight convolutional
neural networks,” in Proc. Eur. Conf. Comput. Vis. Glasgow, U.K.:
Springer, 2020, pp. 234–250.

[47] Z. Su, L. Fang, W. Kang, D. Hu, M. Pietikäinen, and L. Liu, “Dynamic
group convolution for accelerating convolutional neural networks,”
in Proc. Eur. Conf. Comput. Vis. Glasgow, U.K.: Springer, 2020,
pp. 138–155.

[48] B. E. Bejnordi, T. Blankevoort, and M. Welling, “Batch-shaping for
learning conditional channel gated networks,” in Proc. Int. Conf. Learn.
Represent., 2019, pp. 1–14.

[49] M. Hosseini et al., “Cyclic sparsely connected architectures for com-
pact deep convolutional neural networks,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 29, no. 10, pp. 1757–1770, Oct. 2021.

[50] Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138,
Jan. 2017.

[51] L. Deng, P. Jiao, J. Pei, Z. Wu, and G. Li, “GXNOR-Net: Training
deep neural networks with ternary weights and activations without full-
precision memory under a unified discretization framework,” Neural
Netw., vol. 100, pp. 49–58, Apr. 2018.

[52] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “DoReFa-Net:
Training low bitwidth convolutional neural networks with low bitwidth
gradients,” 2016, arXiv:1606.06160.

[53] M. Courbariaux, Y. Bengio, and J. P. David, “BinaryConnect: Training
deep neural networks with binary weights during propagations,” in
Proc. Adv. Neural Inf. Process. Syst., 2015, pp. 3123–3131.

[54] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengi,
“Binarized neural networks,” in Proc. Adv. Neural Inf. Process. Syst.,
vol. 29. 2016, pp. 1–17.

[55] Y. Li, X. Dong, and W. Wang, “Additive powers-of-two quantization:
An efficient non-uniform discretization for neural networks,” 2019,
arXiv:1909.13144.

[56] D. Wan et al., “TBN: Convolutional neural network with ternary inputs
and binary weights,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018,
pp. 315–332.

[57] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhad, “XNOR-Net:
ImageNet classification using binary convolutional neural networks,” in
Proc. Eur. Conf. Comput. Vis. Amsterdam, The Netherlands: Springer,
2016, pp. 525–542.

[58] J. Jin, C. Liang, T. Wu, L. Zou, and Z. Gan, “KDLSQ-BERT:
A quantized bert combining knowledge distillation with learned step
size quantization,” 2021, arXiv:2101.05938.

[59] B. Wu, Y. Wang, P. Zhang, Y. Tian, P. Vajda, and K. Keutzer,
“Mixed precision quantization of ConvNets via differentiable neural
architecture search,” 2018, arXiv:1812.00090.

[60] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “HAQ: Hardware-
aware automated quantization with mixed precision,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 8612–8620.

[61] M. Rusci, M. Fariselli, A. Capotondi, and L. Benini, “Leveraging
automated mixed-low-precision quantization for tiny edge microcon-
trollers,” in IoT Streams for Data-Driven Predictive Maintenance
and IoT, Edge, and Mobile for Embedded Machine Learning. Ghent,
Belgium: Springer, 2020, pp. 296–308.

[62] Z. Dong, Z. Yao, A. Gholami, M. Mahoney, and K. Keutzer, “HAWQ:
Hessian aware quantization of neural networks with mixed-precision,”
in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 293–302.

[63] Z. Dong et al., “HAWQ-v2: Hessian aware trace-weighted quantization
of neural networks,” 2019, arXiv:1911.03852.

[64] Z. Yao et al., “HAWQ-V3: Dyadic neural network quantization,” in
Proc. Int. Conf. Mach. Learn., 2021, pp. 11875–11886.

[65] T. Chen et al., “TVM: An automated end-to-end optimizing compiler
for deep learning,” in Proc. 13th USENIX Symp. Oper. Syst. Design
Implement. (OSDI), 2018, pp. 578–594.

[66] D. P. Kingma and P. Dhariwal, “Glow: Generative flow with invertible
1× 1 convolutions,” 2018, arXiv:1807.03039.

[67] TensorFlow. XLA: Optimizing Compiler for Machine Learning.
Accessed: Oct. 10, 2021. [Online]. Available: https://www.tensorflow.
org/xla

[68] S. Cyphers et al., “Intel nGraph: An intermediate representation,
compiler, and executor for deep learning,” 2018, arXiv:1801.08058.

http://dx.doi.org/10.1109/JETCAS.2021.3127932

546 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 11, NO. 4, DECEMBER 2021

[69] NVIDIA. NVIDIA/TensorRT: TensorRT is a C++ Library for
High Performance Inference on NVIDIA GPUs and Deep Learn-
ing Accelerators. Accessed: Sep. 30, 2021. [Online]. Available:
https://github.com/NVIDIA/TensorRT

[70] V. Kathail, “Xilinx Vitis unified software platform,” in Proc.
ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, Feb. 2020,
pp. 173–174.

[71] C. N. Coelho et al., “Automatic heterogeneous quantization of deep
neural networks for low-latency inference on the edge for particle
detectors,” Nature Mach. Intell., vol. 3, pp. 675–686, Jun. 2021.

[72] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet:
An extremely efficient convolutional neural network for mobile
devices,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 6848–6856.

[73] I. Fedorov, R. P. Adams, M. Mattina, and P. N. Whatmough, “SpArSe:
Sparse architecture search for CNNs on resource-constrained micro-
controllers,” 2019, arXiv:1905.12107.

[74] T. Lawrence and L. Zhang, “IoTNet: An efficient and accurate con-
volutional neural network for IoT devices,” Sensors, vol. 19, no. 24,
p. 5541, Dec. 2019.

[75] M. Rusci, A. Capotondi, and L. Benini, “Memory-driven mixed low
precision quantization for enabling deep network inference on micro-
controllers,” 2019, arXiv:1905.13082.

[76] J. Lin, W.-M. Chen, Y. Lin, J. Cohn, C. Gan, and S. Han, “MCUNet:
Tiny deep learning on IoT devices,” 2020, arXiv:2007.10319.

[77] R. David et al., “TensorFlow lite micro: Embedded machine learning
on TinyML systems,” 2020, arXiv:2010.08678.

[78] L. Lai, N. Suda, and V. Chandra, “CMSIS-NN: Efficient neural network
kernels for Arm Cortex-M CPUs,” 2018, arXiv:1801.06601.

[79] A. N. Mazumder et al., “Automatic detection of respiratory symptoms
using a low power multi-input CNN processor,” IEEE Design Test,
early access, May 11, 2021, doi: 10.1109/MDAT.2021.3079318.

[80] Q. Xiao, Y. Liang, L. Lu, S. Yan, and Y.-W. Tai, “Exploring heteroge-
neous algorithms for accelerating deep convolutional neural networks
on FPGAs,” in Proc. 54th Annu. Design Autom. Conf., Jun. 2017,
pp. 1–6.

[81] S. I. Venieris and C.-S. Bouganis, “fpgaConvNet: Automated mapping
of convolutional neural networks on FPGAs,” in Proc. ACM/SIGDA
Int. Symp. Field-Program. Gate Arrays, Feb. 2017, pp. 291–292.

[82] K. Guo et al., “Angel-Eye: A complete design flow for mapping CNN
onto embedded FPGA,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 37, no. 1, pp. 35–47, Jan. 2018.

[83] M. Vestias, R. P. Duarte, J. T. de Sousa, and H. Neto, “Lite-CNN:
A high-performance architecture to execute CNNs in low density
FPGAs,” in Proc. 28th Int. Conf. Field Program. Logic Appl. (FPL),
Aug. 2018, pp. 1–4.

[84] Y. Ma, T. Zheng, Y. Cao, S. Vrudhula, and J.-S. Seo, “Algorithm-
hardware co-design of single shot detector for fast object detection
on FPGAs,” in Proc. Int. Conf. Comput.-Aided Design (ICCAD),
Nov. 2018, pp. 1–8.

[85] S. Zhang, J. Cao, Q. Zhang, Q. Zhang, Y. Zhang, and Y. Wang,
“An FPGA-based reconfigurable CNN accelerator for YOLO,” in Proc.
IEEE 3rd Int. Conf. Electron. Technol. (ICET), May 2020, pp. 74–78.

[86] A. X. M. Chang and E. Culurciello, “Hardware accelerators for
recurrent neural networks on FPGA,” in Proc. IEEE Int. Symp. Circuits
Syst. (ISCAS), May 2017, pp. 1–4.

[87] S. Han et al., “ESE: Efficient speech recognition engine with sparse
LSTM on FPGA,” in Proc. ACM/SIGDA Int. Symp. Field-Program.
Gate Arrays, Feb. 2017, pp. 75–84.

[88] C. Gao, D. Neil, E. Ceolini, S.-C. Liu, and T. Delbruck, “DeltaRNN:
A power-efficient recurrent neural network accelerator,” in Proc.
ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, Feb. 2018,
pp. 21–30.

[89] A. N. Mazumder, H.-A. Rashid, and T. Mohsenin, “An energy-efficient
low power LSTM processor for human activity monitoring,” in Proc.
IEEE 33rd Int. Syst. Chip Conf. (SOCC), Sep. 2020, pp. 54–59.

[90] M. Mathieu, M. Henaff, and Y. LeCun, “Fast training of convolutional
networks through FFTs,” 2013, arXiv:1312.5851.

[91] N. Vasilache, J. Johnson, M. Mathieu, S. Chintala, S. Piantino, and
Y. LeCun, “Fast convolutional nets with fbfft: A GPU performance
evaluation,” 2014, arXiv:1412.7580.

[92] S. Chetlur et al., “CuDNN: Efficient primitives for deep learning,”
2014, arXiv:1410.0759.

[93] S. Lin et al., “FFT-based deep learning deployment in embedded
systems,” in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE),
Mar. 2018, pp. 1045–1050.

[94] T. Highlander and A. Rodriguez, “Very efficient training of convolu-
tional neural networks using fast Fourier transform and overlap-and-
add,” 2016, arXiv:1601.06815.

[95] T. Abtahi, C. Shea, A. Kulkarni, and T. Mohsenin, “Accelerating convo-
lutional neural network with FFT on embedded hardware,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 26, no. 9, pp. 1737–1749,
Sep. 2018.

[96] A. Page, A. Jafari, C. Shea, and T. Mohsenin, “SPARCNet: A hardware
accelerator for efficient deployment of sparse convolutional networks,”
J. Emerg. Technol. Comput. Syst., vol. 13, no. 3, pp. 31:1–31:32,
May 2017, doi: 10.1145/3005448.

[97] A. Lavin and S. Gray, “Fast algorithms for convolutional neural
networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 4013–4021.

[98] H. Wang, W. Liu, T. Xu, J. Lin, and Z. Wang, “A low-latency sparse-
Winograd accelerator for convolutional neural networks,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2019,
pp. 1448–1452.

[99] T. Yang, Y. Liao, J. Shi, Y. Liang, N. Jing, and L. Jiang, “A Winograd-
based CNN accelerator with a fine-grained regular sparsity pattern,” in
Proc. 30th Int. Conf. Field-Program. Logic Appl. (FPL), Aug. 2020,
pp. 254–261.

[100] D. Wu, X. Fan, W. Cao, and L. Wang, “SWM: A high-performance
sparse-Winograd matrix multiplication CNN accelerator,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 29, no. 5, pp. 936–949,
May 2021.

[101] X. Liu, Y. Chen, C. Hao, A. Dhar, and D. Chen, “WinoCNN: Kernel
sharing Winograd systolic array for efficient convolutional neural
network acceleration on FPGAs,” in Proc. IEEE 32nd Int. Conf. Appl.-
Specific Syst., Archit. Process. (ASAP), Jul. 2021, pp. 258–265.

[102] A. Aimar et al., “NullHop: A flexible convolutional neural net-
work accelerator based on sparse representations of feature maps,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 3, pp. 644–656,
Mar. 2019.

[103] S. Wang et al., “C-LSTM: Enabling efficient LSTM using structured
compression techniques on FPGAs,” in Proc. ACM/SIGDA Int. Symp.
Field-Program. Gate Arrays, Feb. 2018, pp. 11–20.

[104] J. Meng, S. K. Venkataramanaiah, C. Zhou, P. Hansen, P. Whatmough,
and J.-S. Seo, “FixyFPGA: Efficient FPGA accelerator for deep neural
networks with high element-wise sparsity and without external memory
access,” in Proc. 31st Int. Conf. Field-Program. Logic Appl. (FPL),
Aug./Sep. 2021, pp. 9–16.

[105] R. Wu, X. Guo, J. Du, and J. Li, “Accelerating neural network inference
on FPGA-based platforms—A survey,” Electronics, vol. 10, no. 9,
p. 1025, Apr. 2021.

[106] R. Zhao et al., “Accelerating binarized convolutional neural networks
with software-programmable FPGAs,” in Proc. ACM/SIGDA Int. Symp.
Field-Program. Gate Arrays, Feb. 2017, pp. 15–24.

[107] Y. Umuroglu et al., “FINN: A framework for fast, scalable binarized
neural network inference,” in Proc. ACM/SIGDA Int. Symp. Field-
Program. Gate Arrays, Feb. 2017, pp. 65–74.

[108] Y. Zhang, J. Pan, X. Liu, H. Chen, D. Chen, and Z. Zhang, “FracBNN:
Accurate and FPGA-efficient binary neural networks with fractional
activations,” in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate
Arrays, Feb. 2021, pp. 171–182.

[109] H. Alemdar, V. Leroy, A. Prost-Boucle, and F. Petrot, “Ternary neural
networks for resource-efficient AI applications,” in Proc. Int. Joint
Conf. Neural Netw. (IJCNN), May 2017, pp. 2547–2554.

[110] A. Agrawal et al., “A 7 nm 4-core AI chip with 25.6 TFLOPS
hybrid FP8 training, 102.4 TOPS INT4 inference and workload-aware
throttling,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, vol. 64. Feb. 2021, pp. 144–146.

[111] A. Prost-Boucle, A. Bourge, F. Petrot, H. Alemdar, N. Caldwell, and
V. Leroy, “Scalable high-performance architecture for convolutional
ternary neural networks on FPGA,” in Proc. 27th Int. Conf. Field
Program. Logic Appl. (FPL), Sep. 2017, pp. 1–7.

[112] S. Tridgell et al., “Unrolling ternary neural networks,” ACM Trans.
Reconfigurable Technol. Syst., vol. 12, no. 4, pp. 1–23, Nov. 2019.

[113] P. Jokic, S. Emery, and L. Benini, “NN2CAM: Automated neural
network mapping for multi-precision edge processing on FPGA-based
cameras,” 2021, arXiv:2106.12840.

[114] A. Maki, D. Miyashita, K. Nakata, F. Tachibana, T. Suzuki, and
J. Deguchi, “FPGA-based CNN processor with filter-wise-optimized bit
precision,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC),
Nov. 2018, pp. 47–50.

http://dx.doi.org/10.1109/MDAT.2021.3079318
http://dx.doi.org/10.1145/3005448

MAZUMDER et al.: SURVEY ON OPTIMIZATION OF NEURAL NETWORK ACCELERATORS 547

[115] N. K. Manjunath, A. Shiri, M. Hosseini, B. Prakash, N. R. Waytowich,
and T. Mohsenin, “An energy efficient EdgeAI autoencoder accelerator
for reinforcement learning,” IEEE Open J. Circuits Syst., vol. 2,
pp. 182–195, 2021.

[116] S. Liang, S. Yin, L. Liu, W. Luk, and S. Wei, “FP-BNN: Binarized
neural network on FPGA,” Neurocomputing, vol. 275, pp. 1072–1086,
Jan. 2018.

[117] J. Gao, Y. Yao, Z. Li, and J. Lai, “FCA-BNN: Flexible and configurable
accelerator for binarized neural networks on FPGA,” IEICE Trans. Inf.
Syst., vol. 104, no. 8, pp. 1367–1377, 2021.

Arnab Neelim Mazumder (Graduate Student Mem-
ber, IEEE) received the B.S. degree from the
Chittagong University of Engineering and Technol-
ogy (CUET), Bangladesh. He is currently pursuing
the Ph.D. degree with the Computer Science and
Electrical Engineering Department, The University
of Maryland Baltimore County, MD, USA. His
research interests focus on deep neural networks,
on-device AI, FPGA and ASIC designs of hardware
accelerators, and low-power embedded systems.

Jian Meng (Graduate Student Member, IEEE)
received the B.S. degree from Portland State
University, Portland, USA, in 2019. He is cur-
rently pursuing the Ph.D. degree with the School
of Electrical, Computer and Energy Engineering,
Arizona State University, Tempe, AZ, USA. His
current research focuses on the deep neural net-
work compression optimization, hardware–software
co-design with neuromorphic hardware acceleration,
and event-based object detection.

Hasib-Al Rashid (Student Member, IEEE) received
the B.S. degree from the Chittagong University of
Engineering and Technology (CUET), Bangladesh.
He is currently pursuing the Ph.D. degree with
the Computer Science and Electrical Engineering
Department, The University of Maryland Baltimore
County, MD, USA. His research interests focus on
multimodal machine learning and deep learning,
model optimization for edge AI, and software hard-
ware co-design.

Utteja Kallakuri received the M.S. degree from The
University of Maryland Baltimore County (UMBC),
MD, USA, where he is currently pursuing the Ph.D.
degree with the Computer Science and Electri-
cal Engineering Department. His research interests
revolve around FPGA and ASIC designs of hardware
accelerators, deep neural networks, and low-power
embedded systems.

Xin Zhang (Senior Member, IEEE) received the
B.S. degree in electronics engineering from Xi’an
Jiaotong University, Xi’an, China, in 2003, and the
Ph.D. degree in microelectronics from Peking Uni-
versity, Beijing, China, in 2008. In 2008, he joined
the Institute of Industrial Science, The University
of Tokyo, Tokyo, Japan, as a Project Researcher.
In 2012, he was a Visiting Scholar with the Uni-
versity of California at Berkeley and then a Project
Research Associate with the Institute of Industrial
Science, The University of Tokyo. In 2013, he was

with the Institute of Microelectronics (IME), Agency for Science, Technology
and Research (A*STAR), Singapore, as a Scientist. Since 2014, he has
been a Research Staff Member with the IBM Thomas J. Watson Research
Center, Yorktown Heights, NY, USA. Since 2021, he has been an Adjunct
Professor with the Department of Electrical Engineering, Columbia University,
New York, NY, USA. He has authored or coauthored over 50 technical articles
and has over 30 filed or issued patents. His research interests include analog
circuits, power management circuits, dc–dc converters, ac–dc converters,
power devices, magnetics, machine learning hardware/accelerators, computer
system architecture, and server system power delivery/packaging/cooling.
He is currently serving as a Technical Program Committee Member for the
Applied Power Electronics Conference (APEC), the IEEE VLSI Symposium
on Technology and Circuits, the IEEE Custom Integrated Circuits Conference
(CICC), and the IEEE International Solid-State Circuits Conference (ISSCC).
He is also an Organizing Committee Member for the IBM IEEE CAS/EDS–AI
Compute Symposium. He is also serving as a Technical Advisory Board Mem-
ber for the Analog-Mixed Signal Circuits, Systems, and Devices (AMS-CSD),
Semiconductor Research Corporation (SRC). He has served as a Guest Editor
for IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS

AND SYSTEMS (JETCAS) and IEEE SOLID-STATE CIRCUITS LETTERS

(SSC-L).

Jae-Sun Seo (Senior Member, IEEE) received
the B.S. degree in electrical engineering from
Seoul National University, Seoul, South Korea,
in 2001, and the M.S. and Ph.D. degrees in elec-
trical engineering from the University of Michigan,
Ann Arbor, MI, USA, in 2006 and 2010, respec-
tively. From 2010 to 2013, he was with the
IBM Thomas J. Watson Research Center, Yorktown
Heights, NY, USA, where he worked on cogni-
tive computing chips under the DARPA SyNAPSE
Project and energy-efficient integrated circuits for

high-performance processors. In 2014, he joined the School of Electrical,
Computer and Energy Engineering, Arizona State University, Tempe, AZ,
USA, where he is currently an Associate Professor. In 2015, he joined
Intel Circuits Research Labs, Hillsboro, OR, USA, as a Visiting Faculty.
His current research interests include efficient hardware design of machine
learning and neuromorphic algorithms and integrated power management.
He was a recipient of the Samsung Scholarship from 2004 to 2009, the IBM
Outstanding Technical Achievement Award in 2012, the NSF CAREER Award
in 2017, and the Intel Outstanding Researcher Award in 2021.

Tinoosh Mohsenin (Senior Member, IEEE)
received the M.Sc. degree in electrical and
computer engineering from Rice University in 2004
and the Ph.D. degree in electrical and computer
engineering from the University of California
at Davis in 2010. She is currently an Associate
Professor with the Department of Computer
Science and Electrical Engineering, The University
of Maryland Baltimore County, where she is
also the Director of the Energy Efficient High
Performance Computing Lab. She has authored or

coauthored over 130 peer-reviewed journals and conference publications.
Her research focus is on designing energy efficient embedded processors for
machine learning and signal processing, knowledge extraction techniques for
autonomous systems, wearable smart health monitoring, and embedded big
data computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

